
Recursive Constraints to Prevent Instability
in Constrained Reinforcement Learning

Jaeyoung Lee*
University of Waterloo
Waterloo, ON, Canada

jaeyoung.lee@uwaterloo.ca

Sean Sedwards*
University of Waterloo
Waterloo, ON, Canada

sean.sedwards@uwaterloo.ca

Krzysztof Czarnecki
University of Waterloo
Waterloo, ON, Canada

krzysztof.czarnecki@uwaterloo.ca

ABSTRACT
We consider the challenge of finding a deterministic policy for a
Markov decision process that uniformly (in all states) maximizes
one reward subject to a probabilistic constraint over a different
reward. Existing solutions do not fully address our precise problem
definition, which nevertheless arises naturally in the context of
safety-critical robotic systems. This class of problem is known to be
hard, but the combined requirements of determinism and uniform
optimality can create learning instability.

In this work, after describing and motivating our problem with
a simple example, we present a suitable constrained reinforcement
learning algorithm that prevents learning instability, using recur-
sive constraints. Our proposed approach admits an approximative
form that improves efficiency and is conservative w.r.t. the con-
straint.

KEYWORDS
Constrained Markov decision process, constrained reinforcement
learning, uniform optimality, learning instability

1 INTRODUCTION
Constrained optimization of Markov decision processes is a well-
studied field, with a number of algorithms in existence for specific
problem definitions [1–7, 10]. In our work, we wish to find a deter-
ministic policy that uniformly maximizes one reward subject to a
probabilistic constraint over a different reward. This problem arises
naturally in safety-critical systems, such as autonomous driving,
where it is required to maximize performance while bounding the
probability of hazards, in all states. Since these systems are our
focus, we will refer to the notion of satisfying a constraint as safety.
Hence, our optimality can be intuitively stated as: in every state, an
agent should choose a safe action that maximizes performance or,
if no safe action exists, the least unsafe action. Despite its apparent
simplicity and similarity to other problems, this definition appears
not to have an adequate existing solution.

The characteristics that distinguish our problem specification
from previous work is that we require both a deterministic policy
(for explainability) and uniform optimality (optimality in every
state). Moreover, to ensure safety, the calculation of probability
cannot be discounted, as it can with other rewards. In what follows,
we show that with naive reinforcement learning algorithms, this
combination entails learning instability (oscillation) and inaccurate
estimates of probability.

* Contributed equally.

Proc. of the 1st Multi-Objective Decision Making Workshop (MODeM 2021), Hayes, Man-
nion, Vamplew (eds.), July 14-16, 2021, Online, http://modem2021.cs.nuigalway.ie. 2021.

Much previous work has considered stochastic policies [1, 3, 6,
10], while that which considers deterministic policies [4, 5, 7] does
not include the notion of uniform optimality. Unpublished preprints
that appear to address a similar problem formulation to ours [8, 11]
use examples that do not demonstrate the inherent instability that
we have discovered. This is perhaps understandable: even with
an adequate example, we have observed that a suitable choice of
hyperparameters with a naive learning approach may sufficiently
mask the instability for it to seem like mere stochasticity. This is
likely to be especially true when using function approximation,
where the expectation of convergence is less.

Our proposed solution (Section 5) is a model-based reinforce-
ment learning algorithm that uses recursive constraints to prevent
instability while achieving our notion of optimality. Our proposed
approach admits an approximative form that improves efficiency
and is conservative w.r.t. safety. We suggest this algorithm as a
suitable candidate for further extension to the model-free case.

The remainder of this paper proceeds as follows. In Section 2
we define the mathematical preliminaries required for the sequel.
In Section 3 we describe the (sometimes conflicting) requirements of
our notion of constrained optimality. In Section 4 we give a simple
motivating example that demonstrates the inherent instability with
naive learning approaches. In Section 5 we describe our algorithm
based on recursive constraints and provide results of experiments
in Section 6 that demonstrate its advantages. We briefly conclude
our work in Section 7.

2 PRELIMINARIES
In this paper, N := N ∪ {∞} and N0 := N0 ∪ {∞} denote the sets
of extended natural numbers and extended non-negative integers,
respectively. For 𝑛,𝑚 ∈ N0, we also denote

[𝑛..𝑚] := {𝑘 ∈ N0 | 𝑛 ≤ 𝑘 ≤ 𝑚}

We consider a finite Markov decision process (MDP)

M := (S+,A+, T, 𝛾,R)

where S+ := S ∪ S⊥ is a finite set of states consisting of the disjoint
sets of all non-terminal states S and all terminal states S⊥. A+ is
a finite set of actions and 𝛾 ∈ [0, 1) is discount rate; transition
function T(𝑠, 𝑎) describes the distribution of next state over S+,
given a current state 𝑠 ∈ S and a chosen action 𝑎 ∈ A+; the reward
model R : S+ ×A+ × S+ → R determines the reward R(𝑠, 𝑎, 𝑠 ′) for
transition (𝑠, 𝑎, 𝑠 ′) ∈ S × A+ × S+ and the terminal one R(𝑠, 𝑎, 𝑠)
at terminal state-action 𝑠𝑎 ∈ S⊥ × A+. The sets S+ and A+ are
finite. We denote A(𝑠) (⊆ A+) the set of all available actions in
state 𝑠 ∈ S+, which is assumed non-empty for all 𝑠 ∈ S+.

http://modem2021.cs.nuigalway.ie

A path is a sequence of alternating states, actions and rewards

(𝑠0𝑎0𝑟0) (𝑠1𝑎1𝑟1) · · · (𝑠𝑇−1𝑎𝑇−1𝑟𝑇−1)𝑠𝑇𝑎𝑇 𝑟𝑇
s.t. 𝑠𝑡𝑎𝑡 ∈ S×A(𝑠𝑡), 𝑠𝑡+1∼T(𝑠𝑡 , 𝑎𝑡) and 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) for each
𝑡 ∈ [0..𝑇 −1], 𝑠𝑇𝑎𝑇 ∈ S⊥ × A(𝑠𝑇) and 𝑟𝑇 = R(𝑠𝑇 , 𝑎𝑇 , 𝑠𝑇), where
𝑇 ∈ N0 denotes the terminal index, the first hitting time on S⊥. The
reward sequence 𝑟0𝑟1 · · · 𝑟𝑇 and discount rate 𝛾 define the return

𝑅𝑇 := 𝑟0 + 𝛾 · 𝑟1 + 𝛾2 · 𝑟2 + 𝛾3 · 𝑟3 + · · · + 𝛾𝑇 · 𝑟𝑇 (1)

A policy is a mapping 𝜋 : S+ → A+ s.t. 𝜋 (𝑠) ∈ A(𝑠) for all 𝑠 ∈ S+.
Given 𝑠 ∈ S+ (resp. 𝑠𝑎 ∈ S+ ×A(𝑠)), policy 𝜋 and MDPM generate
paths s.t. 𝑠0 = 𝑠 (resp. 𝑠0𝑎0 = 𝑠𝑎) and 𝑎𝑡 = 𝜋 (𝑠𝑡) thereafter, thus
inducing probability measures over all such paths. For notational
simplicity, we adopt the notations

P(𝜑 | 𝑠0 = 𝑠, 𝜋) and P(𝜑 | 𝑠0𝑎0 = 𝑠𝑎, 𝜋),
denoting the probabilities that the paths generated by policy 𝜋 ,
given 𝑠0 = 𝑠 and 𝑠0𝑎0 = 𝑠𝑎, respectively, satisfy the property 𝜑 ;

E(𝑥 | 𝑠0 = 𝑠, 𝜋) and E(𝑥 | 𝑠0𝑎0 = 𝑠𝑎, 𝜋)
denote the corresponding expectations of a random variable 𝑥 .

Probabilistic Reachability of Failure States. Let F⊥ ⊆ S⊥ be a set
of all failure states, then given policy 𝜋 defines the (unbounded)
probabilistic reachability of F⊥ from 𝑠 ∈ S+:

𝑃 (𝑠 ;𝜋) := P(𝑠𝑇 ∈ F⊥ | 𝑠0 = 𝑠, 𝜋)
meaning the probability of reaching a failure state ∈ F⊥ at the
terminal instant𝑇 , given that an episode starts from the state 𝑠0 = 𝑠
and follows the policy 𝜋 . 𝑃 (𝑠 ;𝜋) thus quantifies how safe it is to
follow the policy 𝜋 from the initial state 𝑠 . By definition,

𝑃 (𝑠 ;𝜋) = 1(𝑠 ∈ F⊥) ∀𝑠 ∈ S⊥
where 1(·) is the indicator function.

Given a safety threshold 𝜃 ∈ [0, 1), we define the sets of all safe
and unsafe states, S(𝜃 ;𝜋) and F (𝜃 ;𝜋), respectively, as

S(𝜃 ;𝜋) :={𝑠 ∈ S+ | 𝑃 (𝑠 ;𝜋) ≤ 𝜃
}

F (𝜃 ;𝜋) :={𝑠 ∈ S+ | 𝑃 (𝑠 ;𝜋) > 𝜃
}

The entire state space S+ is then partitioned by these disjoint safe
and unsafe regions as S+ = S(𝜃 ;𝜋) ∪ F (𝜃 ;𝜋).

Value Functions. Given policy 𝜋 , define its value function 𝑉 as

𝑉 (𝑠 ;𝜋) := E(𝑅𝑇 | 𝑠0 = 𝑠, 𝜋) .
where 𝑅𝑇 is the return (1). The value 𝑉 (𝑠 ;𝜋) is a performance
metric to be optimized at each 𝑠 ∈ S. At each terminal state 𝑠 ∈ S⊥,
it is directly given by 𝑉 (𝑠 ;𝜋) = R(𝑠, 𝜋 (𝑠), 𝑠). Similarly, we define
the action-value functions for each (𝑠, 𝑎) ∈ S+×A(𝑠) as

𝑄 (𝑠, 𝑎 ;𝜋) := E(𝑅𝑇 | 𝑠0𝑎0 = 𝑠𝑎, 𝜋)
P(𝑠, 𝑎 ;𝜋) := P(𝑠𝑇 ∈ F⊥ | 𝑠0𝑎0 = 𝑠𝑎, 𝜋)

which are the same as 𝑄 (𝑠 ;𝜋) and 𝑃 (𝑠 ;𝜋), except that they repre-
sent the value and probabilistic reachability, respectively, when the
action 𝑎 is taken at the initial state 𝑠 ∈ S and then 𝜋 is followed.

3 CONSTRAINED OPTIMALITY
We denote 𝜋𝜃 the assumed existent optimal policy that holds the
following properties, labelled P1—P4, associated with threshold
𝜃 ∈ [0, 1). For notational convenience, we denote

Ŝ(𝜃) := S(𝜃 ;𝜋𝜃) and F̂ (𝜃) := F (𝜃 ;𝜋𝜃)
P1 𝜋𝜃 is uniformly optimal in the sense that for any policy 𝜋 ,

𝑃 (𝑠 ;𝜋) ≤ 𝑃 (𝑠 ;𝜋𝜃) =⇒ 𝑉 (𝑠 ;𝜋) ≤ 𝑉 (𝑠 ;𝜋𝜃) ∀𝑠 ∈ Ŝ(𝜃) (2)

𝑉 (𝑠 ;𝜋𝜃) ≤ 𝑉 (𝑠 ;𝜋) =⇒ 𝑃 (𝑠 ;𝜋𝜃) ≤ 𝑃 (𝑠 ;𝜋) ∀𝑠 ∈ F̂ (𝜃) (3)

In other words, P1 means that 𝜋𝜃 is Pareto optimal w.r.t. perfor-
mance and safety, uniformly in its safe and unsafe regions Ŝ(𝜃)
and F̂ (𝜃), respectively.

There may exist multiple optimal policies that all satisfy P1 but
achieve different Pareto efficiency. The next property limits such
optimality to the case(s) where the safety is maximally improved
over the unsafe region.

P2 𝜋𝜃 is uniformly least unsafe over F̂ (𝜃) in the sense that for
any policy 𝜋 s.t. 𝜋 = 𝜋𝜃 over Ŝ(𝜃),

𝑃 (𝑠 ;𝜋𝜃) ≤ 𝑃 (𝑠 ;𝜋) ∀𝑠 ∈ F̂ (𝜃) (4)

P2 makes sense also in practice since we trade-off safe and perfor-
mance within the safe region but not in the unsafe region, in which
safety comes to be the first priority to be optimized.

Next, it is desirable to have the following monotonicity property
among the optimal policies w.r.t. different thresholds.

P3 If 0 ≤ 𝜗 ≤ 𝜗 ′ ≤ 1, then

𝑉 (𝑠 ;𝜋𝜗) ≤ 𝑉 (𝑠 ;𝜋𝜗′) ∀𝑠 ∈ Ŝ(𝜗 ′)
𝑃 (𝑠 ;𝜋𝜗) ≤ 𝑃 (𝑠 ;𝜋𝜗 ′) ∀𝑠 ∈ S+ (5)

The intuition behind P3 is that the weaker the constraint is (i.e., the
larger 𝜃), the less conservative the optimal policy is (i.e., the larger
probabilistic reachability, thus potentially the better performance).
Equation (5) means 𝜋𝜗 ′ is less conservative than 𝜋𝜗 . In addition,
we can see that if P3 is true, then so are (2) for 𝜃 = 𝜗 ′ and 𝜋 = 𝜋𝜗 ,
and (3) for 𝜃 = 𝜗 and 𝜋 = 𝜋𝜗′ , in P1. That is, the properties P1 and
P3 are coherent.

For the next property, let the Bellman operator T𝜃 , on the space
of functions from each (𝑠, 𝑎) ∈ S+×A(𝑠) to R2, be defined as

T𝜃 (𝑄,P) := (𝑄 ′,P′)
where 𝑄 ′(𝑠, 𝑎) = R(𝑠, 𝑎, 𝑠) and P′(𝑠, 𝑎) = 1(𝑠 ∈ F⊥) for all 𝑠 ∈ S⊥,
and otherwise,

𝑄 ′(𝑠, 𝑎) = E[𝑟0 + 𝛾 ·𝑄 (𝑠1, 𝜋 ′(𝑠1)) �� 𝑠0𝑎0 = 𝑠𝑎
]

P′(𝑠, 𝑎) = E[P(𝑠1, 𝜋 ′(𝑠1)) �� 𝑠0𝑎0 = 𝑠𝑎
]

for a policy 𝜋 ′ given by

𝜋 ′(𝑠) ∈


argmax
𝑎∈A𝜃 (𝑠 ;P)

𝑄 (𝑠, 𝑎) if A𝜃 (𝑠 ;P) ≠ ∅

argmin
𝑎∈A(𝑠)

P(𝑠, 𝑎) otherwise
(6)

A𝜃 (𝑠 ;P) := {𝑎 ∈ A(𝑠) | P(𝑠, 𝑎) ≤ 𝜃 } (7)

where A𝜃 (𝑠 ;P) is the constrained action set constructed from P,
and the dependency of 𝑄 ′, P′, and 𝜋 ′ on 𝜃 is implicit.

X 𝑠1 𝑠2 G
L𝑝

1 − 𝑝

R 𝑝

1 − 𝑝

R
1 − 𝑝

𝑝

Figure 1: A simple counter-MDP for P4 when 0.5 < 𝑝 < 1

In what follows, we state properties regarding the Bellman oper-
ator T𝜃 and the optimal action-value functions denoted by

𝑄̂𝜃 (𝑠, 𝑎) := 𝑄 (𝑠, 𝑎 ;𝜋𝜃) and P̂𝜃 (𝑠, 𝑎) := P(𝑠, 𝑎 ;𝜋𝜃)

P4 (𝑄̂𝜃 , P̂𝜃) is a fixed point of T𝜃 , i.e., (𝑄̂𝜃 , P̂𝜃) = T𝜃 (𝑄̂𝜃 , P̂𝜃).

Note that P4 is a reasonable property of optimality—if it is true,
then the action 𝑎 = 𝜋𝜃 (𝑠) at state 𝑠 ∈ Ŝ(𝜃) yields the best value
among those actions 𝑎 satisfying the constraint P̂𝜃 (𝑠, 𝑎) ≤ 𝜃 and at
the unsafe state 𝑠 ∈ F̂ (𝜃), 𝑎 is safer than any other actions 𝑎 ∈ A(𝑠).
The latter is also consistent with P2, and P4 is necessary for con-
vergence of dynamic programming and reinforcement learning
methods.

4 LEARNING INSTABILITY
In this section, we present a simple example—the “counter-MDP”
shown in Figure 1—which demonstrates that P4 (the fixed point
property) does not hold for certain values of threshold 𝜃 . Dynamic
programming is therefore unstable.

The state space of this example is S+ = {𝑠1, 𝑠2,X,G}, with S =

{𝑠1, 𝑠2}, S⊥ = {X,G} andF⊥ = {X}. The action spaceA+ = A(𝑠1) =
{L, R}, with A(𝑠2) = {R}. For each transition during an execution
there is a reward of −1. Intuitively, the learning objective is to
minimize the expected discounted path length, while keeping the
probability of reaching X less than or equal to 𝜃 . In general, the
smaller 𝜃 , the higher the probability of the agent reaching G.

We assume the initial state is 𝑠1, where the agent chooses to
move either to the left (action L) or to the right (action R). With
probability 𝑝 > 0 the agent moves in its chosen direction and with
probability 1 − 𝑝 it moves in the opposite direction. For simplicity,
the agent has no choice in state 𝑠2 and must choose action R. From
𝑠2, the agent will reach the goal G with probability 1 − 𝑝 , or return
to state 𝑠1 with probability 𝑝 . An episode terminates when the agent
reaches a terminal state in S⊥.

Only two policies exist—choose L in 𝑠1 or choose R in 𝑠1—which
we denote by 𝜋L and 𝜋R, respectively. For notational simplicity, we
denote the corresponding action-value functions in state 𝑠1 by

𝑄𝑎L := 𝑄 (𝑠1, 𝑎 ;𝜋L)
P𝑎L := P(𝑠1, 𝑎 ;𝜋L)

𝑄𝑎R := 𝑄 (𝑠1, 𝑎 ;𝜋R)
P𝑎R := P(𝑠1, 𝑎 ;𝜋R)

where the dependency on 𝑠1 is implicit. Hence, for example, 𝑄𝑎L is
the Q-function when the agent initially takes 𝑎 ∈ {L,R} at 𝑠1 and
then follows 𝜋L. Given the simplicity of the MDP, 𝑄𝑎L and P𝑎L can

be given as explicit functions of probability 𝑝:

PLL =
𝑝

1 − 𝑝𝑞
𝑄LL = − 1 + 𝛾𝑞

1 − 𝛾2𝑝𝑞

PRL = 1 − 𝑝𝑞

1 − 𝑝𝑞

𝑄RL = −1 + 𝛾𝑝 + 𝛾
2𝑝 (𝑝 − 𝑞)

1 − 𝛾2𝑝𝑞
where 𝑞 := 1 − 𝑝 . Similarly,

PLR = 2 · 𝑝

𝑝 + 1
𝑄LR = −1 + 𝛾 (1 − 2𝑝)1 − 𝛾𝑝

PRR =
1

𝑝 + 1
𝑄RR = − 1

1 − 𝛾𝑝
In Figures 2 and 3 we plot these equations against 𝑝 , for 𝛾 = 0.95.
In the following analysis, to demonstrate the counter-example, we
consider only 0.5 < 𝑝 < 1.

0.5 1
−3

−1

𝑝

𝑄LL

𝑄RL

(a)𝑄𝑎L vs 𝑝

0.5 1
−20

−10

−2

−1

𝑝

𝑄LR

𝑄RR

(b)𝑄𝑎R vs 𝑝

Figure 2: Q-functions for 𝑠1 w.r.t. (a) 𝜋L and (b) 𝜋R, for𝛾 = 0.95

0.5 0.7 1
0.5

0.85

1

𝑝

PLL

PRL

PLR

(a) P𝑎L vs 𝑝

0.5 1
0.5

1

𝑝

PLR

PRR

(b) P𝑎R vs 𝑝

Figure 3: P-functions for 𝑠1 w.r.t. (a) 𝜋L and (b) 𝜋R

Figures 2a and 2b plot the Q-values of each action in state 𝑠1,
given the policy is 𝜋L and 𝜋R, respectively. We see that regardless
of the policy and the value of 𝑝 > 0.5, action L always has the
greater Q-value. Hence, while the actual Q-value depends on the
policy, there is never any ambiguity about which action to choose
to maximize the reward: if the constraint is satisfied, the agent
should always choose action L.

Figures 3a and 3b plot the P-values of each action in state 𝑠1,
given the policy is 𝜋L and 𝜋R, respectively. As in the case of the
Q-values, we see that action L for 𝑝 > 0.5 unambiguously has
greater P-value, with the actual P-value depending on the policy.
In contrast to the Q-value case, however, the probability that the

P-value represents must also satisfy the constraint, i.e., be less than
or equal to threshold 𝜃 . The relative performance of the two actions
L and R is therefore not sufficient to decide which one is optimal.

To make this decision, we first note that the P-value for action L
under 𝜋L (PLL) is the true probability for taking action L, and the P-
value for action R under 𝜋R (PRR) is the true probability for taking
action R. We then call the P-value for action L under 𝜋R (PRL) the
estimated probability for taking action L (under 𝜋R), and call the
P-value for action R under 𝜋L (PLR) the estimated probability of
action R (under 𝜋L).

In Figure 3a we see that the true probability of action L is always
greater than the estimated probability of action L. If we choose
a threshold 𝜃 between the true and estimated values, such that
PLL > 𝜃 > PLR, we find that a simple learning agent will not be able
to decide which action is optimal using only the P-values. Suppose,
during the learning process, the current policy is 𝜋L, whichwe know
maximizes the Q-value, the agent will see that the P-value (PLL)
is greater than 𝜃 , which does not satisfy the constraint. Figure 3a
shows that the estimated value of action R under 𝜋L (PLR) will
satisfy the constraint, so the agent chooses 𝜋R. Under 𝜋R, however,
the estimated value of action L (PLR) appears now to satisfy the
constraint, so the (memoryless) agent chooses 𝜋L once again.

To see this phenomenon in a concrete learning example, consider
the policy iteration process described in Table 1, with (𝑝, 𝜃,𝛾) =
(0.7, 0.85, 0.95) and 𝜋R as its initial policy. At the first iteration 𝑖 = 1,
PLR ≤ 𝜃 indicates that action L seems to be safe, and thus we choose
𝜋L. However, at the next iteration (𝑖 = 2), PLL ≰ 𝜃 shows that 𝜋L
is not safe, which forces us to choose 𝜋R again. Unfortunately,
PLR ≤ 𝜃 at iteration 𝑖 = 2 falsely indicates that action L is safe,
again! This oscillation continues ad infinitum.

In summary, we see that a naive learning approach with the
example shown in Figure 1 will not reach a fixed point, so P4 does
not hold in general.

5 RECURSIVE CONSTRAINTS
In this section, we answer to the following questions—(i) “what is
wrong with fixed point property P4?”; (ii) “how can we solve it?”

To address the former, we point out the mismatch between P1
and P4. If 𝜋𝜃 holds (2) in P1, then it satisfies

𝜋𝜃 (𝑠) ∈ argmax
𝑎∈Â𝜃 (𝑠)

𝑄̂𝜃 (𝑠, 𝑎) ∀𝑠 ∈ Ŝ(𝜃) (8)

Â𝜃 (𝑠) := {𝑎 ∈ A(𝑠) | P̂𝜃 (𝑠, 𝑎) ≤ 𝑃 (𝑠 ;𝜋𝜃)}

Intuitively, (8) means that 𝜋𝜃 must yield a higher value over the safe
region, Ŝ(𝜃), than any of its conservative one-point modifications
in Ŝ(𝜃). However, we can easily notice the difference between the
two constrained action sets—Â𝜃 (𝑠) in (8) and A𝜃 (𝑠 ; P̂𝜃), where
A𝜃 (𝑠 ; ·) is defined by (7) and used to construct the policy (7) and
thus the Bellman operator T𝜃 in P4. Here, P̂𝜃 (𝑠, 𝑎) is constrained
by the threshold 𝜃 in the latter but by 𝑃 (𝑠 ;𝜋𝜃) in the former. For
each 𝑠 ∈ Ŝ(𝜃), since 𝑃 (𝑠 ;𝜋𝜃) ≤ 𝜃 holds by the definition of Ŝ(𝜃),
the former Â𝜃 (𝑠) is more conservative than the latter A𝜃 (𝑠 ; P̂𝜃),
that is, Â𝜃 (𝑠) ⊆ A𝜃 (𝑠 ; P̂𝜃). Therefore, P1 ≠⇒ P4, in general.

In a similar manner to (8), 𝜋𝜃 is safer over F̂ (𝜃) than any of its
less performing one-point modifications in F̂ (𝜃) if it satisfies (3)

in P1. In this case, we have

𝜋𝜃 (𝑠) ∈ argmin
𝑎∈Â𝜃

′ (𝑠)
P̂𝜃 (𝑠, 𝑎) ∀𝑠 ∈ F̂ (𝜃) (9)

Â𝜃
′ (𝑠) := {𝑎 ∈ A(𝑠) | 𝑄̂𝜃 (𝑠, 𝑎) ≤ 𝑉 (𝑠 ;𝜋𝜃)}

On the other hand, if 𝜋𝜃 holds P2, then it satisfies (9) with Â𝜃
′ (𝑠)

replaced byA(𝑠) shown in the policy (6) on the unsafe argmin-part.
Therefore, from the standard dynamic programming theory, we
can conclude that P1 and P2 imply P4 if the constrained action set
A𝜃 (𝑠 ; P̂𝜃) is equal to or replaced by Â𝜃 (𝑠).

From the discussions above on the conservatism of P1 w.r.t. P4,
we hypothesize that

A𝜃 (· ; P̂𝜃) has to be replaced with a constrained action set, e.g.,
Â𝜃 (·), that is more conservative, for P4 to be true.

In fact, the hypothesis is true for the counter-MDP in Figure 1. To
see this, we revisit the policy iteration example with (𝑝, 𝜃,𝛾) =
(0.7, 0.85, 0.95) and 𝜋R as its initial policy, but also with recursive
constraints illustrated in Table 2. Here, the meaning of the recur-
sive constraints is clear from Table 2—for each action 𝑎 ∈ {L,R},
we superimpose all the constraints on 𝑎 by recursion, up to the
current iteration, and use it to judge whether 𝑎 is a safe action or
not. Denoting C𝑎 (𝑖) such a recursive constraint for action 𝑎, made
at iteration 𝑖 , then at each iteration in Table 2, it satisfies by its
construction

CL (1) = (PLR ≤ 𝜃)
CL (2) = (PLL ≰ 𝜃) ∧ CL (1) = (PLL ≰ 𝜃) ∧ (PLR ≤ 𝜃)
CL (3) = (PLR ≤ 𝜃) ∧ CL (2) = (PLR ≤ 𝜃) ∧ (PLL ≰ 𝜃)
CL (4) = (PLR ≤ 𝜃) ∧ CL (3) = (PLR ≤ 𝜃) ∧ (PLL ≰ 𝜃)

...
...

...
...

...

From this, we observe that the constraint CL on the action 𝑎 at 𝑠1
is now stabilized and thereby, yields the same safe policy 𝜋R from
iteration 𝑖 = 3, as shown in Table 2, whereas it was not without
such recursive constraints, as illustrated in Table 1.

On the other hand, the idea of recursive constraints, demon-
strated in Table 2, still has the issue that except for policy iteration, a
dynamic programming or reinforcement learning method typically
does not wait until its value function (e.g., P(𝑠, 𝑎 ;𝜋)) is accurately
estimated. In Table 2 for example, if PLL and/or PLR is not correctly
estimated at the previous iterations, then the recursive constraint
CL at the current iteration can be so deteriorated and messy as it is
constructed from all the previous constraints, including those based
on inaccurate predictions at the early stages. In particular, the initial
values of PLL and PLR are typically random and has no information,
which introduces and transfers absurd random constraints, to all
iterations. Hence, the recursive constraints at and around the initial
stages must be also stabilized, in order to generalize themselves to
a broad class of reinforcement learning methods.

In order to solve such a remaining issue on stability, we (i) re-
place the iteration axis in Table 2 with the axis of horizon window
𝑛 = 1, 2, . . . , 𝑁 and (ii) replace the constraint at stage 𝑛 with

max𝑚∈[1..𝑛] P̂𝑚 (𝑠, 𝑎) ≤ 𝜃

Table 1: Policy iteration on the MDP in Figure 1 for (𝑝, 𝜃,𝛾) = (0.7, 0.85, 0.95)

Iteration 𝑖 1 2 3 4 5 · · ·
Given policy 𝜋R 𝜋L 𝜋R 𝜋L 𝜋R · · ·

Constraints
L PLR ≈ 0.82 ≤ 𝜃 = 0.85 PLL ≈ 0.89 ≰ 𝜃 PLR ≤ 𝜃 PLL ≰ 𝜃 PLR ≤ 𝜃 · · ·
R PRR ≈ 0.59 ≤ 𝜃 = 0.85 PRL ≈ 0.73 ≤ 𝜃 PRR ≤ 𝜃 PRL ≤ 𝜃 PRR ≤ 𝜃 · · ·

Table 2: Policy iteration with recursive constraints on the MDP in Figure 1 for (𝑝, 𝜃,𝛾) = (0.7, 0.85, 0.95)

Iteration 𝑖 1 2 3 4 · · ·
Given policy 𝜋R 𝜋L 𝜋R 𝜋R · · ·

Constraints
L CL ← (PLR ≤ 𝜃) CL ← (PLL ≰ 𝜃) ∧ CL CL ← (PLR ≤ 𝜃) ∧ CL CL ← (PLR ≤ 𝜃) ∧ CL · · ·
R CR ← (PRR ≤ 𝜃) CR ← (PRL ≤ 𝜃) ∧ CR CR ← (PRR ≤ 𝜃) ∧ CR CR ← (PRR ≤ 𝜃) ∧ CR · · ·

where P̂𝑛 (𝑠, 𝑎) is for an (over-)approximation of the 𝑛-bounded
probabilistic reachability

P𝑛 (𝑠, 𝑎 ;𝜋) := P(𝑠min(𝑇,𝑛) ∈ F⊥ | 𝑠0𝑎0 = 𝑠𝑎, 𝜋)
w.r.t. the policy 𝜋 = 𝜋𝑛−1 obtained at the previous stage 𝑛− 1. Here,
an over-approximation means 0 ≤ P𝑛 (𝑠, 𝑎 ;𝜋𝑛−1) ≤ P̂𝑛 (𝑠, 𝑎) ≤ 1.
To describe our proposal, we also denote

𝑃𝑛 (𝑠 ;𝜋) := P(𝑠min(𝑇,𝑛) ∈ F⊥ | 𝑠0 = 𝑠, 𝜋)
which satisfies 𝑃𝑛 (𝑠 ;𝜋) = P𝑛 (𝑠, 𝜋 (𝑠) ;𝜋) for all 𝑠 ∈ S+.

Note that P𝑛 (· ;𝜋) at horizon 𝑛 = 1 is now stable since it does
not depend on the policy anymore, as shown below:

P̂1 (𝑠, 𝑎) := P1 (𝑠, 𝑎 ;𝜋) = P(𝑠1 ∈ F⊥ | 𝑠0𝑎0 = 𝑠𝑎) ∀𝑠 ∈ S
From P̂1 (·), we construct the first policy 𝜋1 on the horizon axis as
(in this case, substitute 𝑛 = 1)

𝜋𝑛 (𝑠) ∈

argmax
𝑎∈Â𝑛 (𝑠)

𝑄̂𝑛 (𝑠, 𝑎) if Â𝑛 (𝑠) ≠ ∅

argmin
𝑎∈A(𝑠)

P̂𝑛 (𝑠, 𝑎) otherwise

Â𝑛 (𝑠) := {𝑎 ∈ A(𝑠) | C𝑎 (𝑛 ; 𝑠)} 𝑄̂𝑛 (𝑠, 𝑎) := 𝑄 (𝑠, 𝑎 ;𝜋𝑛)

(10)

where the constraint C𝑎 (1 ; 𝑠) := (P̂1 (𝑠, 𝑎) ≤ 𝜃), and the depen-
dency on the threshold 𝜃 is all implicit. Also note that the horizons
of 𝑄̂1 and P̂1 are∞ and 1, respectively.

At the next stage 𝑛 = 2, note that the 𝑛-bounded probabilistic
reachability w.r.t. 𝜋1 satisfies the Bellman equation of the form

P2 (𝑠, 𝑎 ;𝜋1) = E[P̂1 (𝑠1, 𝜋1 (𝑠1))
�� 𝑠0𝑎0 = 𝑠𝑎

] ∀𝑠 ∈ S (11)

Therefore, denoting P̂2 (𝑠, 𝑎) := P2 (𝑠, 𝑎 ;𝜋1), the second policy 𝜋2

can be easily constructed via (10), whose constraint is recursively
defined as C𝑎 (2 ; 𝑠) := (P̂2 (𝑠, 𝑎) ≤ 𝜃) ∧ C𝑎 (1 ; 𝑠).

At horizon 𝑛 = 3, 4, 5, . . . , 𝑁 , the 𝑛-bounded probabilistic reacha-
bility P𝑛 (· ;𝜋𝑛−1) w.r.t. the policy 𝜋𝑛−1 given at the previous step
𝑛 − 1 satisfies the Bellman equation:

P𝑛 (𝑠, 𝑎 ;𝜋𝑛−1) = E[𝑃𝑛−1 (𝑠1 ;𝜋𝑛−1) �� 𝑠0𝑎0 = 𝑠𝑎
] ∀𝑠 ∈ S

However, in order to obtain 𝑃𝑛−1 (· ;𝜋𝑛−1), we need to calculate
𝑃𝑚 (· ;𝜋𝑛−1) and use it in the backward induction for 𝑃𝑚+1 (· ;𝜋𝑛−1),
all the way through𝑚 = 1, 2, 3, . . . , 𝑛 − 1. The longer the horizon 𝑛
is, the more complexity this procedure induces in space and time.

Instead, our design choice is to use a substitute P̂𝑛−1 (𝑠, 𝜋𝑛−1 (𝑠))
obtained at the previous stage 𝑛 − 1. Therefore, we define

P̂𝑛 (𝑠, 𝑎) := E[P̂𝑛−1 (𝑠1 ;𝜋𝑛−1 (𝑠1)) �� 𝑠0𝑎0 = 𝑠𝑎
] ∀𝑠 ∈ S

and construct the policy 𝜋𝑛 at the current horizon 𝑛 via (10), w.r.t.
the recursive constraint

C𝑎 (𝑛 ; 𝑠) := (P̂𝑛 (𝑠, 𝑎) ≤ 𝜃) ∧ C𝑎 (𝑛 − 1 ; 𝑠)
Here, P̂𝑛−1 (𝑠, 𝜋𝑛−1 (𝑠)) typically over-approximates 𝑃𝑛−1 (𝑠 ;𝜋𝑛−1)
since 𝜋𝑛−1 is constructed with a fewer constraints than 𝜋𝑛−2, and{

𝑃𝑛−1 (𝑠 ;𝜋𝑛−1) = P𝑛−1 (𝑠, 𝜋𝑛−1 (𝑠) ;𝜋𝑛−1)
P̂𝑛−1 (𝑠, 𝜋𝑛−1 (𝑠)) = P𝑛−1 (𝑠, 𝜋𝑛−1 (𝑠) ;𝜋𝑛−2)

Finally, we provide the policy 𝜋𝑁 at the last horizon 𝑁 as the
receding-horizon solution that is potentially conservative but able
to uniformly and (sub-)optimally improves the performance sub-
ject to 𝑁 -bounded probabilistic reachability constraint imposed on
every state. To address the instability issue, the final policy 𝜋𝑁 has
the recursive constraints C𝑎 (𝑁 ; 𝑠) that contain all constraints w.r.t.
shorter horizons, i.e.,

C𝑎 (𝑁 ; 𝑠) =
∧

𝑛∈[1..𝑁]
(P̂𝑛 (𝑠, 𝑎) ≤ 𝜃) ⇐⇒

(
max

𝑛∈[1..𝑁]
P̂𝑛 (𝑠, 𝑎)

)
≤ 𝜃

where each P̂𝑛 (·) is recursively defined from the initial one P̂1 (·)
that is independent of any policy and hence can be stably obtained.

Since the recursive constraint C𝑎 (𝑁 ; 𝑠) makes the constrained
action set Â𝑁 (𝑠) monotonically decreasing as 𝑁 increases, and
since Â𝑁 (𝑠) is finite, it is stabilized within a finite horizon, say𝑀 ,
after which the process becomes the same as that for unconstrained
MDPs but w.r.t. the action space Â𝑀 (·). That is, the final policy 𝜋𝑁
converges as 𝑁 →∞, at the infinite-horizon.

Now that we have a well-defined solution 𝜋𝑁 , the next ques-
tion is “how to find it?”. To be precise, the remaining issue is “how
to estimate all the action-value functions P̂𝑛 (𝑛-horizon) and 𝑄̂𝑛

(infinite-horizon) for 𝑛 = 1, 2, 3, . . . , 𝑁 ?”. The answer is that rein-
forcement learning ideas, such as value iteration and Q-learning,
can be employed for such a purpose. In what follows, we compare
naive value iteration based on the Bellman operator T𝜃 , which does
not hold the fixed point property P4, with the idea of recursive

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝜃

threshold
true
estimate

(a) 𝑃 (𝑠0 ;𝜋) vs 𝜃

0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

𝜃

true
estimate

(b)𝑉 (𝑠0 ;𝜋) vs 𝜃

Figure 4: Experimental results for naive value iteration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝜃

threshold
true
estimate

(a) 𝑃 (𝑠0 ;𝜋) vs 𝜃

0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

𝜃

true
estimate

(b)𝑉 (𝑠0 ;𝜋) vs 𝜃

Figure 5: Experimental results of our proposed approach

constraints and bounded probabilistic reachability presented in this
section.

6 EXPERIMENTS
To illustrate the benefits of our approach, we implemented com-
peting value iteration methods and applied them to a “cliffworld”
environment [9] that generalizes the MDP in Figure 1 by allowing
actions in all possible directions; transitions to the desired direction
are made with probability 0.5 and to a random direction with the
remaining 0.5 probability. Using the full range of 𝜃 , in Figure 4 we
present the results of naive value iteration (Algorithm 1) with a
total of 50 iterations. In Figure 5 we present corresponding results
using our proposed approach (Algorithm 2) with a total of 15 itera-
tions and horizon 𝑁 = 15. Figure 4 shows that within a wide range
around 𝜃 = 0.8: (i) naive value iteration thinks that the current
policy is safe (orange curve) while it actually is not (blue curve);
(ii) the switching between the policies randomly induces errors,
with the values not converging. In contrast, Figure 5 shows that
our approach does not exhibit any such chattering or violations.
More experimental and theoretical study is ongoing work, but we
can clearly see from the present experiments that the solution of
our approach for each 𝜃 is apparently stable and converged.

7 CONCLUSION
In this work, we have considered a constrained optimization prob-
lem that arises naturally in the context of safety-critical systems.
Despite this, and our problem’s apparently reasonable requirements,
we find that there is no existing approach to adequately address it.
On closer inspection, we have discovered that our insistence on a
deterministic policy and uniform optimality imposes restrictions
that make an already hard task [5] more difficult. In particular, we
have shown with a simple example that a naive learning approach
can be unstable and have no fixed point. We have thus proposed and
demonstrated a model-based reinforcement learning algorithm that
uses recursive constraints to address the instability. The approx-
imative form of this approach reduces computational cost, while
making the constraints conservative.

In future work, we will adapt our algorithm to the model-free
case, and explore the possibility of using our approachwith function
approximation.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support of Japan-
ese Science and Technology agency (JST) ERATO project JPM-
JER1603: HASUO Metamathematics for Systems Design. The au-
thors also express their gratitude to Abhinav Grover, for his partic-
ipation in early discussions and implementation.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In 34th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh
(Eds.). MLR Press, 22–31.

[2] Eitan Altman. 1999. Constrained Markov Decision Processes. CRC Press.
[3] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad

Ghavamzadeh. 2018. A Lyapunov-based Approach to Safe Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), Vol. 31.
OpenReview, 8103–8112.

[4] Dmitri Dolgov and Edmund Durfee. 2005. Stationary Deterministic Policies
for Constrained MDPs with Multiple Rewards, Costs, and Discount Factors. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI). Morgan Kaufmann, 1326–1331.

[5] Eugene A Feinberg. 2000. Constrained Discounted Markov Decision Processes
and Hamiltonian Cycles. Mathematics of Operations Research 25, 1 (2000), 130–
140.

[6] Eugene A Feinberg and Adam Shwartz. 1999. Constrained Dynamic Programming
with Two Discount Factors: Applications and an Algorithm. IEEE Trans. Automat.
Control 44, 3 (1999), 628–631.

[7] Peter Geibel and Fritz Wysotzki. 2005. Risk-Sensitive Reinforcement Learning
Applied to Control Under Constraints. Journal of Artificial Intelligence Research
24 (2005), 81–108.

[8] Gabriel Kalweit, Maria Huegle, Moritz Werling, and Joschka Boedecker. 2020.
Deep Constrained Q-learning. arXiv:2003.09398

[9] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[10] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. 2019. Reward Constrained
Policy Optimization. In International Conference on Learning Representations
(ICLR). OpenReview.

[11] Aditya Undurti, Alborz Geramifard, and Jonathan P. How. 2011. Function Ap-
proximation for Continuous Constrained MDPs. (2011).

https://arxiv.org/abs/2003.09398

Algorithm 1: Naive Value Iteration
Input:
M : MDP (S+,A+, T, 𝛾,R)
F⊥ : set of all failure states
𝜃 : constraint threshold ∈ [0, 1)

𝑘 : number of iterations

Output:
𝜋 : solution policy
𝑄,P : estimates of action-value functions 𝑄 (·, 𝜋) and P(·, 𝜋)
/* initialization */

1 𝑄 (𝑠, 𝑎) ← initial value, e.g. 0 ∀(𝑠, 𝑎) ∈ S ×A(𝑠)
2 P(𝑠, 𝑎) ← initial value ∈ [0, 1] ∀(𝑠, 𝑎) ∈ S ×A(𝑠)
3 𝑄 (𝑠, 𝑎) ← R(𝑠, 𝑎, 𝑠) ∀(𝑠, 𝑎) ∈ S⊥ ×A(𝑠)
4 P(𝑠, 𝑎) ← 1(𝑠 ∈ F⊥) ∀(𝑠, 𝑎) ∈ S⊥ ×A(𝑠)
/* main loop */

5 repeat 𝑘 times
6 Â(𝑠) ← {𝑎 ∈ A(𝑠) | P(𝑠, 𝑎) ≤ 𝜃 } ∀𝑠 ∈ S+
7 𝜋 ← GetPolicy(Â, 𝑄,P)
8 foreach (𝑠, 𝑎) ∈ S ×A(𝑠) do
9 𝑄̂ (𝑠, 𝑎) ←

∑
𝑠′∈S+

T(𝑠, 𝑎) (𝑠 ′) · (R(𝑠, 𝑎, 𝑠 ′)+𝛾 ·𝑄 (𝑠 ′, 𝜋 (𝑠 ′)))
10 P̂ (𝑠, 𝑎) ←

∑
𝑠′∈S+

T(𝑠, 𝑎) (𝑠 ′) · P(𝑠 ′, 𝜋 (𝑠 ′))

11 𝑄 ← 𝑄̂

12 P← P̂

/* update the solution policy */

13 Â(𝑠) ← {𝑎 ∈ A(𝑠) | P𝑛 (𝑠, 𝑎) ≤ 𝜃 } ∀𝑠 ∈ S+
14 𝜋 ← GetPolicy(Â, 𝑄,P)
15 return 𝜋,𝑄,P

Subroutine 1: GetPolicy(Â, 𝑄,P)
1 foreach 𝑠 ∈ S+ do

2 𝜋 (𝑠) ← 𝑎 ∈

argmax
𝑎′∈Â(𝑠)

𝑄 (𝑠, 𝑎′) if Â(𝑠) ≠ ∅

argmin
𝑎′∈A(𝑠)

P(𝑠, 𝑎′) otherwise

3 return π

Algorithm 2: Value Iteration with Recursive Constraints
Input:
M : MDP (S+,A+, T, 𝛾,R)
F⊥ : set of all failure states
𝜃 : constraint threshold ∈ [0, 1)

𝑘 : number of iterations
𝑁 : horizon ∈ N

Output:
𝜋 : solution policy
𝑄𝑁 ,P𝑁 : estimates of functions 𝑄 (·, 𝜋) and P𝑁 (·, 𝜋)
/* initialization */

1 𝑄1:𝑁 (𝑠, 𝑎) ← initial value, e.g. 0 ∀(𝑠, 𝑎) ∈ S ×A(𝑠)
2 P1 (𝑠, 𝑎) ← ∑

𝑠′∈F⊥ T(𝑠, 𝑎) (𝑠 ′) ∀(𝑠, 𝑎) ∈ S ×A(𝑠)
3 𝑄1:𝑁 (𝑠, 𝑎) ← R(𝑠, 𝑎, 𝑠) ∀(𝑠, 𝑎) ∈ S⊥ ×A(𝑠)
4 P1:𝑁 (𝑠, 𝑎) ← 1(𝑠 ∈ F⊥) ∀(𝑠, 𝑎) ∈ S⊥ ×A(𝑠)
/* main loop */

5 repeat 𝑘 times
6 Â← A

7 for 𝑛 = 1, 2, . . . , 𝑁 do
8 Â(𝑠) ← {𝑎 ∈ Â(𝑠) | P𝑛 (𝑠, 𝑎) ≤ 𝜃 } ∀𝑠 ∈ S+
9 𝜋 ← GetPolicy(Â, 𝑄𝑛,P𝑛)

10 foreach (𝑠, 𝑎) ∈ S ×A(𝑠) do
11 𝑄̂ (𝑠, 𝑎) ←

∑
𝑠′∈S+

T(𝑠, 𝑎) (𝑠 ′) · (R(𝑠, 𝑎, 𝑠 ′) + 𝛾 ·𝑄𝑛 (𝑠 ′, 𝜋 (𝑠 ′)))
12 foreach (𝑠, 𝑎) ∈ S ×A(𝑠) if 𝑛 < 𝑁 do
13 P𝑛+1 (𝑠, 𝑎) ←

∑
𝑠′∈S+

T(𝑠, 𝑎) (𝑠 ′) · P𝑛 (𝑠 ′, 𝜋 (𝑠 ′))

14 𝑄𝑛 ← 𝑄̂

/* update the solution policy */

15 Â← A

16 for 𝑛 = 1, 2, . . . , 𝑁 do
17 Â(𝑠) ← {𝑎 ∈ Â(𝑠) | P𝑛 (𝑠, 𝑎) ≤ 𝜃 } ∀𝑠 ∈ S+

18 𝜋 ← GetPolicy(Â, 𝑄𝑁 ,P𝑁)
19 return 𝜋,𝑄𝑁 ,P𝑁

	Abstract
	1 Introduction
	2 Preliminaries
	3 Constrained Optimality
	4 Learning Instability
	5 Recursive Constraints
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

